Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tunneling current through a quantum dot array

Identifieur interne : 00FB50 ( Main/Repository ); précédent : 00FB49; suivant : 00FB51

Tunneling current through a quantum dot array

Auteurs : RBID : Pascal:01-0488621

Descripteurs français

English descriptors

Abstract

The tunneling current through a quantum dot array (QDA) is studied theoretically. Strong electron correlation effect is taken into account in the QDA in which the quantum dots provide a strong three-dimensional confinement effect. A mixed Hubbard and Anderson model is used to simulate the system. It is found that Coulomb charging splits the band resulting from interdot coupling into two subbands. The tunneling current is thus influenced significantly by both Coulomb charging and interdot coupling. © 2001 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0488621

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Tunneling current through a quantum dot array</title>
<author>
<name sortKey="Kuo, David M T" uniqKey="Kuo D">David M.-T. Kuo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Engineering, Cheng-Shiu Institute of Technology, Kaohsiung 833, Taiwan</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">République de Chine (Taïwan)</country>
<wicri:regionArea>Department of Electronic Engineering, Cheng-Shiu Institute of Technology, Kaohsiung 833</wicri:regionArea>
<wicri:noRegion>Kaohsiung 833</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, National Taiwan University, Taipei 106, Taiwan</s1>
</inist:fA14>
<country xml:lang="fr">République de Chine (Taïwan)</country>
<wicri:regionArea>Department of Physics, National Taiwan University, Taipei 106</wicri:regionArea>
<wicri:noRegion>Taipei 106</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Guo, G Y" uniqKey="Guo G">G. Y. Guo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Engineering, Cheng-Shiu Institute of Technology, Kaohsiung 833, Taiwan</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">République de Chine (Taïwan)</country>
<wicri:regionArea>Department of Electronic Engineering, Cheng-Shiu Institute of Technology, Kaohsiung 833</wicri:regionArea>
<wicri:noRegion>Kaohsiung 833</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chang, Yia Chung" uniqKey="Chang Y">Yia-Chung Chang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Engineering, Cheng-Shiu Institute of Technology, Kaohsiung 833, Taiwan</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">République de Chine (Taïwan)</country>
<wicri:regionArea>Department of Electronic Engineering, Cheng-Shiu Institute of Technology, Kaohsiung 833</wicri:regionArea>
<wicri:noRegion>Kaohsiung 833</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">01-0488621</idno>
<date when="2001-12-03">2001-12-03</date>
<idno type="stanalyst">PASCAL 01-0488621 AIP</idno>
<idno type="RBID">Pascal:01-0488621</idno>
<idno type="wicri:Area/Main/Corpus">010352</idno>
<idno type="wicri:Area/Main/Repository">00FB50</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anderson model</term>
<term>Arrays</term>
<term>Coulomb blockade</term>
<term>Hubbard model</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Semiconductor quantum dots</term>
<term>Theoretical study</term>
<term>Tunnel effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7321L</term>
<term>7363K</term>
<term>7323H</term>
<term>Etude théorique</term>
<term>Indium composé</term>
<term>Semiconducteur III-V</term>
<term>Point quantique semiconducteur</term>
<term>Réseau(arrangement)</term>
<term>Effet tunnel</term>
<term>Modèle Anderson</term>
<term>Modèle Hubbard</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The tunneling current through a quantum dot array (QDA) is studied theoretically. Strong electron correlation effect is taken into account in the QDA in which the quantum dots provide a strong three-dimensional confinement effect. A mixed Hubbard and Anderson model is used to simulate the system. It is found that Coulomb charging splits the band resulting from interdot coupling into two subbands. The tunneling current is thus influenced significantly by both Coulomb charging and interdot coupling. © 2001 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>79</s2>
</fA05>
<fA06>
<s2>23</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Tunneling current through a quantum dot array</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KUO (David M.-T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GUO (G. Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHANG (Yia-Chung)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electronic Engineering, Cheng-Shiu Institute of Technology, Kaohsiung 833, Taiwan</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, National Taiwan University, Taipei 106, Taiwan</s1>
</fA14>
<fA14 i1="03">
<s1>Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801</s1>
</fA14>
<fA20>
<s1>3851-3853</s1>
</fA20>
<fA21>
<s1>2001-12-03</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2001 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>01-0488621</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The tunneling current through a quantum dot array (QDA) is studied theoretically. Strong electron correlation effect is taken into account in the QDA in which the quantum dots provide a strong three-dimensional confinement effect. A mixed Hubbard and Anderson model is used to simulate the system. It is found that Coulomb charging splits the band resulting from interdot coupling into two subbands. The tunneling current is thus influenced significantly by both Coulomb charging and interdot coupling. © 2001 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C20D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C23</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7321L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7363K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7323H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Réseau(arrangement)</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Arrays</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet tunnel</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Tunnel effect</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Modèle Anderson</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Anderson model</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Modèle Hubbard</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Hubbard model</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Coulomb blockade</s0>
<s4>INC</s4>
</fC03>
<fN21>
<s1>344</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0148M000051</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00FB50 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00FB50 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:01-0488621
   |texte=   Tunneling current through a quantum dot array
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024